Greedy Distinguishers and Nonrandomness Detectors

نویسنده

  • Paul Stankovski
چکیده

We present the concept of greedy distinguishers and show how some simple observations and the well known greedy heuristic can be combined into a very powerful strategy (the Greedy Bit Set Algorithm) for efficient and systematic construction of distinguishers and nonrandomness detectors. We show how this strategy can be applied to a large array of stream and block ciphers, and we show that our method outperforms every other method we have seen so far by presenting new and record-breaking results for Trivium, Grain-128 and Grain v1. We show that the greedy strategy reveals weaknesses in Trivium reduced to 1026 (out of 1152) initialization rounds using 2 complexity – a result that significantly improves all previous efforts. This result was further improved using a cluster; 1078 rounds at 2 complexity. We also present an 806-round distinguisher for Trivium with 2 complexity. Distinguisher and nonrandomness records are also set for Grain-128. We show nonrandomness for the full Grain-128 with its 256 (out of 256) initialization rounds, and present a 246-round distinguisher with complexity 2. For Grain v1 we show nonrandomness for 96 (out of 160) initialization rounds at the very modest complexity of 2, and a 90-round distinguisher with complexity 2. On the theoretical side we define the Nonrandomness Threshold, which explicitly expresses the nature of the randomness limit that is being explored.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Greedy Nonrandomness Detectors for Stream Ciphers

We consider the problem of designing distinguishers and nonrandomness detectors for stream ciphers using the maximum degree monomial test. We construct an improved algorithm to determine the subset of key and IV-bits used in the test. The algorithm is generic, and can be applied to any stream cipher. In addition to this, the algorithm is highly tweakable, and can be adapted depending on the des...

متن کامل

Cube Testers and Key Recovery Attacks on Reduced-Round MD6 and Trivium

CRYPTO 2008 saw the introduction of the hash function MD6 and of cube attacks, a type of algebraic attack applicable to cryptographic functions having a low-degree algebraic normal form over GF(2). This paper applies cube attacks to reduced round MD6, finding the full 128-bit key of a 14-round MD6 with complexity 2 (which takes less than a minute on a single PC). This is the best key recovery a...

متن کامل

Coping with recall and precision of soft error detectors

Many methods are available to detect silent errors in high-performance computing (HPC) applications. Each method comes with a cost, a recall (fraction of all errors that are actually detected, i.e., false negatives), and a precision (fraction of true errors amongst all detected errors, i.e., false positives). The main contribution of this paper is to characterize the optimal computing pattern f...

متن کامل

Approximation Algorithms for Determining Placement of Intrusion Detectors

To secure today’s computer systems, it is critical to have different intrusion detection sensors embedded in them. The complexity of distributed computer systems makes it difficult to determine the appropriate choice and placement of these detectors because there are many possible sensors that can be chosen and each sensor can be placed in several possible places in the distributed system. In t...

متن کامل

Integral and Multidimensional Linear Distinguishers with Correlation Zero

Zero-correlation cryptanalysis uses linear approximations holding with probability exactly 1/2. In this paper, we reveal fundamental links of zero-correlation distinguishers to integral distinguishers and multidimensional linear distinguishers. We show that an integral implies zero-correlation linear approximations and that a zero-correlation linear distinguisher is actually a special case of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010